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Abstract: Small farms are thought to produce around a third of the global crop supply. But, in the wake of
the climate crisis, their existence is increasingly vulnerable to changes in the spatial and temporal availabil-
ity of water. The small-scale irrigation systems which water these farms present a social-ecological dilemma:
Upstream farms have prevailing access to a canal’s resources, but all farms along the canal must contribute
to maintaining the irrigation infrastructure. Thus, it is key to assess the social mechanisms which promote re-
silience in these systems and, more widely, in complex social-ecological dilemmas under changing conditions.
Toward this, we build on previous work in which a stylized irrigation dilemma was simulated via a social lab
experiment. Studies of the data produced from this experiment modeled participants’ behavior with multi-
ple, theoretically grounded agent-based models (ABMs). These models encode causal, human-interpretable
hypotheses of decision making which generates the real-world behavior observed in the experiment. However,
the accuracy of these models in fitting the experimental data is limited. Using Evolutionary Model Discovery,
a recent algorithm for inverse generative social science (iGSS), we show the ability to automatically generate a
wide variety of unique new ABMs which fit the experimental data more accurately and robustly than the origi-
nal, manually-constructed ABMs. To do this, we algorithmically explore the space of possible behavioral rules
for agents choosing how to contribute to the maintenance of the irrigation infrastructure. We find that, in con-
trast to the original models, our best-performing models typically have an additional element of stochasticity
and favor factors such as other-regarding preferences and perceived relative income. Given that this change in
just a small part of the original model has yielded such an advance, our results suggest that iGSS methods have
great potential for continuing to derive more accurate models of complex social-ecological dilemmas.

Keywords: Inverse Generative Social Science, Evolutionary Model Discovery, Social-Ecological Systems, Irriga-
tion Systems

This article is part of a special section on "Inverse Generative Social Science", guest-editors: Joshua M.
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Introduction

1.1 As the climate crisis continues to cause ecological upset across our Earth (Michelozzi & De’Donato 2021), an
increasing number of communities have grown ever more vulnerable to once-rare environmental events such
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as droughts, changing temperatures, storms, and extreme weather (Michelozzi & De’Donato 2021). Political,
technological, and social changes are required in order to lessen the human cost of climate change and prevent
collapse in the agricultural systems on which we all rely on. The study of social-ecological commons dilemmas,
therefore, has grown more important than ever as we work to study the mechanisms which will allow us to
best understand–and therefore intervene–in these systems. Increasing understanding on this front allows us
to engineer and govern sustainable, antifragile systems (Taleb 2012): systems that not only can cope, but thrive
under changing conditions and increased disturbances.

1.2 These mechanisms driving human behavior in such commons dilemmas have been a focus of scholars for
decades (Dawes 1980; Ostrom 1990; Dietz et al. 2003; Cifdaloz et al. 2010; Gutiérrez et al. 2011; Anderies et al.
2013, 2011; Janssen et al. 2012; Janssen & Baggio 2017; Baggio et al. 2015), yet the precise mechanisms govern-
ing peoples’ behavior in many types of systems are still largely a mystery. Irrigation systems are one such com-
mons dilemma; In river and canal-based irrigation systems, upstream farmers have greater access and control
of the system’s resources than downstream farmers by the simple nature of their physical location. Yet, contri-
butions are required from all users of the system in order to maintain and repair the irrigation infrastructure,
as individual upstream farmers do not typically have the resources to maintain only their section of full-scale
irrigation infrastructure alone (see e.g., Cifdaloz et al. 2010). To date, many qualitative understandings have
been derived from the study of such systems, but no unified model exists describing the factors contributing to
human decision making which are more likely to increase the resilience of these systems.

1.3 We contribute further to the study of irrigation systems by reanalyzing data collected from participants engaging
in a simulated irrigation system in an experimental laboratory setting (Anderies et al. 2013). In this experiment,
participants were given charge of virtual fields which required regular watering via an irrigation canal shared by
three other participants. The simulation was formulated in a round-based game-like format. Participants were
rewarded tokens for successfully supplying their fields with water; however, the canal’s efficiency would also
degrade each round, requiring participants to invest their earnings into the canal’s upkeep in order to keep the
system in working order.

1.4 The original experimenters gathered time series through collecting information on the participants’ behavior
each round such as investment amounts and water extraction levels. They deduced various macro-scale met-
rics from the participants’ behavior such as Gini coefficients for participants’ earnings and average group level
investments over the entire game. Traditional statistical analysis was able to gather some mechanistic insights
on the data (Anderies et al. 2013; Janssen et al. 2015; Baggio et al. 2015), but it was unable to fully explain the
dynamics of each time series. Pursuant to this, scholars constructed agent-based models in attempt to better
explain behavioral characteristics of the individuals in these irrigation common pool resource games (Baggio &
Janssen 2013; Janssen & Baggio 2017). Each hypothesized model of agent behavior was carefully formulated
based on existing theories on human decision making in relevant environments (Janssen & Baggio 2017; Bag-
gio & Janssen 2013), in line with the current best practice of drawing from cognitive science to inform agent
architectures for generative social science (Miranda & Garibary 2022; Miranda 2022). However, no single model
offered an especially accurate or robust explanation of the data. Each model was, at best, a partial fit.

Inverse generative social science

1.5 Recently, problems such as this have become a ripe opportunity to employ a related family of advancements in
agent-based modelling known as inverse generative social science (iGSS). To conceptualize iGSS, consider: On
a fundamental level, an ABM is a tacit hypothesis that a given set of micro-scale rules for agent interaction work
together to produce an observed macro-scale emergent phenomena. Naturally, it is desirable to test multiple
different multiple possible hypotheses. Traditionally, modellers’ intuitions and qualitative domain literature
have been the primary sources in forming such hypotheses. Since constructing each hypothesis requires a con-
siderable amount of manual work, testing variation has primarily been limited to adjusting numeric parameters
or testing only a limited selection of rules. Researchers have therefore been very limited in the number of alter-
native rule hypotheses that they are able to test, and the space of plausible, alternative rules often goes largely
unexplored.

1.6 Inverse generative social science (iGSS) serves to remedy this issue by leveraging machine learning to auto-
mate the exploration of the space of possible rules (Epstein 1999; Vu et al. 2019). Rather than building up entire
models, the iGSS modeller begins by specifying possible subsets of models. That is, the modeller defines a
set of primitive agent constituents and operator functions capable of combining them. They then define an
appropriate fitness function or selection pressure used to be able to evaluate how good a given model is, typ-
ically seeking the generation of a known macro-scale phenomenon or a precise fit to real-world data. Then, a
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specialized iGSS machine learning algorithm combines and recombines the model primitives into new mod-
els, evaluates them, and converges towards optimal models in an evolutionary fashion. To do this, we utilize
evolutionary model discovery (EMD), a recent framework for iGSS (Gunaratne et al. 2021; Gunaratne 2019). Our
results take the form of a variety of different agent token-investment strategies and an analysis of the possible
causal factors which contribute to this behavior.

1.7 In this study, we leverage advances in iGSS and evolutionary model discovery in order to devise which sets of
rules are more likely to give rise to the outcomes observed in the original irrigation experiments. Our results
indicate that a missing key to previously formulated models may have been an additional element of stochas-
ticity which was not accounted for. Our analysis also indicates that other factors, such as utility maximization
and perceived relative income, are also important in increasing model fitness.

1.8 In light of this and the evidence presented from other works, we argue that iGSS has powerful potential for
deriving more accurate and robust inferences on the relationship between micro-level elements and observed
macro-phenomena.

Research questions

• RQ1: Is there a model or class of models that can outperform the current state-of-the-art in explaining
human decision making in irrigation experiments?

• RQ2: Can inverse generative social science be utilized as a sound methodology in producing such a model
or class of models?

Background

The irrigation experiment

2.1 In 2010-2012, a series of experiments were run at Arizona State University with undergraduate student partic-
ipants that were presented either a digitally or paper-based simulated irrigation system (Anderies et al. 2013;
Janssen et al. 2015; Baggio et al. 2015). The irrigation system requires maintenance and provides water. Par-
ticipants then, at each round, needed to decide how much to invest in maintaining the infrastructure and how
much water they wanted to extract. Depending on the level of the group investment, a specific amount of wa-
ter was available for extraction. Upstream participants had a natural priority in their access to the water versus
downstream participants. At the end of the game, the five participants were rewarded with a direct conversion
of tokens to US dollars.

2.2 The experiments were first statistically analyzed via regression models which discovered some correlations in
the data (Anderies et al. 2013; Janssen et al. 2015; Baggio et al. 2015). Data from irrigation experiments were
also analyzed by constructing multiple, competing agent based models in which agents follow rules dictated
by theoretical considerations (i.e. selfish, altruistic, utilitarian, random etc.) (Baggio & Janssen 2013). Further,
this approach was refined on another set of irrigation experiments in Janssen & Baggio (2017). The analysis
via agent based models in Baggio & Janssen (2013) and Janssen & Baggio (2017) shed some light on potential
rules governing the overall irrigation system, but, of the handful of competing rules, no one model was found
to clearly outperform all others.

Evolutionary Model Discovery

2.3 We leverage evolutionary model discovery (EMD), a framework for iGSS,(Gunaratne et al. 2021; Gunaratne 2019)
to derive possible behavioral rules in an inverse fashion. The algorithm on which EMD is based combines pro-
vided model subsets/primitives (henceforth referred to as factors) and operators into syntactic trees which en-
code new models of agent behavior. Using genetic programming, generations of these trees are formulated,
mutated, and evaluated according to a provided fitness function. The best-performing rules are then allowed
to cross-breed and generate successive generations.

2.4 After obtaining the data encoding model performance from the genetic program, the modeler may use it to an-
alyze the importance and efficacy of individual factors and their interactions. Using this information, the mod-
eller may analyze the automatically-generated models and use the insights gained therein to manually create
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new models and test whether they improve the overall fitness. These models can then be assessed in order to
provide new scientific insights about the causal relationships which lead to observed macro-scale phenomena.

2.5 EMD and related approaches in iGSS have been successfully used in automating the discovery of sophisticated
models in domains such as archaeology (Gunaratne & Garibay 2020), social media analysis (Gunaratne et al.
2021), and public health (Vu et al. 2019).

Methods

3.1 Here, we specifically examine the irrigation experiment performed and analyzed in Baggio et al. (2015) and
Baggio & Janssen (2013). We begin with the highest-performing model derived in Baggio & Janssen (2013): The
other-regarding preferences (utilitarian) model, a model based on findings from behavioral economics. In a
nutshell, each agent is imbued with either a competitive, egalitarian, or altruistic disposition. The probability
of an agent having any one of these decisions is determined by parameters. Each agent then incorporates in-
formation on the environment and their neighbors’ behavior to make decisions which maximize some notion
of utility which is congruent with their disposition.

3.2 In order to place more precise bounds on our scope and search-space, we concentrate on agent investment
behavior and leave extraction behavior unchanged. In place of the investment behavior, we allow the insertion
of new models generated from a set of hypothesized alternate factors.

Hypothesized alternate factors influencing investment decision

3.3 To capture a more realistic space of human behavior, we utilize the paradigm introduced by Agent_Zero (Ep-
stein 2014) of ensuring factors represent three dimensions of human decision-making: rational, social, and
emotional. We indicate the hypothesized factors in Table 1. Of these, Fself, Fheur, Fpseu, Falt, and Futil represent
factors originally hypothesized in Baggio & Janssen (2013). We introduce the factors: Frand to serve both as
a “null” model and allow additional stochasticity; Fup and Fdown to allow for dynamics more directly related
to neighbors’ investments; and Finc to add an emotional dimension, as prior work has shown that perceived
income relative to others affects investment behavior (Anderies et al. 2013; Janssen et al. 2012; Baggio et al.
2015) and serves a proxy for emotions such as envy, superiority, generosity, etc. Note that considering each of
these dimensions of human decision-making is simply a conceptual modeling tool, and factors may indeed be
arbitrarily argued to belong to more than one dimension or a different dimension than l in Table 1.

3.4 We formulate each factor as a function Fi(x) : [0..10] → [0, 1]. This represents the probability of investing
x tokens (an integer between 0 and 10) due to the given factor Fi. These factors can then be combined using
addition (+), subtraction (-), multiplication (*), and division (/) into a combined rule R(x). For example, a given
R(x) may be R(x) = 2 ∗ Fself + Fup − Fdown.

3.5 Agents then decide the number of tokens to invest, x′, using argmax over the possible investment amounts:

x′ = argmax
x∈[1..10]

R(x) (1)

3.6 Or, alternatively, using argmin to allow for the probabilistic complement of R(x). Note also that, with the in-
clusion of the subtraction operator, the probabilistic complement of each individual factor is also encoded. For
example, while Fup produces a more positive value for x more similar to the upstream neighbor’s last invest-
ment, −Fup produces a more negative value.

3.7 We model factors concerned with higher probability centered on a particular value v with the linear probability
density P (v, x) = −

∣∣ v−x
ω

∣∣+ 1 where ω is a parameter controlling the “width” of the probabilization.

Evolutionary model discovery

3.8 Our function fit for evaluating model fitness, separate from the agent decision functions detailed in the previ-
ous section, is identical to that used in Baggio & Janssen (2013). It is defined as: fit = fit1 ·fit2 ·fit3 ·fit4 ·fit5
where each fiti is defined as the normalized squared difference between simulated data, ds, and experimen-
tally observed data, de, for a particular metric fiti = 1 − (de − de)

2. The metrics are defined as the average
group level investments in the public infrastructure level over the 10 rounds (fit1), the average contribution per
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position (fit2), the average collection per position (fit3), the average Gini coefficient of contributions (fit4),
and the average Gini coefficient of collected tokens (fit5).

3.9 Hence, higher fit represents a better fit to the experimental data with a maximum fitness of fit = 1 and min-
imum of fit = 0. This fitness function is useful, in that it effectively achieves a single aggregated function
encompassing multiple optimization objectives. Through multiplying each metric, low fitness in one metric is
more heavily penalized than if the metrics were simply summed and normalized.

3.10 For example, comparing one case with all fiti = 0.9 versus another case of fit1 = fit2 = fit3 = fit4 = 0.9
but fit5 = 0.5, the penalty for the lower fit5 is a reduction of fitness of 0.08 if using a summed and normalized
fitness ((

∑
i fiti)/5), but the reduction is 0.262 if using a product fitness (

∏
i fiti).

3.11 Janssen et al. (2012) compared different configurations of fitness measures (including product, normalized
sum, and others still), but they ultimately did not find a qualitative difference in them. Hence, we choose the
product fit for its slight quantitative advantages described above.

3.12 We initialize all model parameters to a random value uniformly distributed between plus-or-minus 0.05 the
optimal values reported in Table 3 of Baggio & Janssen (2013). This initialization allows us to alleviate over-
fitting to arbitrarily precise parameters which allows the discovery of more robust models (Gunaratne & Garibay
2020).

3.13 We chose the hyperparameters for evolutionary model discovery based on Gunaratne & Garibay (2020): We set
the mutation rate to 0.2, and we allowed the crossover rate to vary between 0.6 and 0.8. We set the minimum
tree depth to 2, as this is the minimum depth for a valid rule in the formulation of the problem (allowing for
the first layer to be the argmax/argmin function and the second layer to be a single factor). To encourage the
exploration of the possibility of more complex rules, we set the maximum tree depth to 64.

3.14 In total, we ran the algorithm until it had evolved approximately 10,000 models. Of these, based on fitness,
we selected the top 100 models and sampled each of them 100 times to obtain a fitness distribution under the
randomly initialized parameters. For all of this, we used the NetLogo/Python implementation of EMD provided
by Gunaratne & Garibay (2020).

Results

4.1 We begin showcasing the results by assessing all 10,000 evolved models/rules. Our analysis follows the method-
ological footsteps put forth by prior EMD analyses such as Gunaratne & Garibay (2020) and Gunaratne et al.
(2021). That is, we begin by analyzing the importance of individual and joint factors in terms of their impact on
the fitness of each model. We then analyze the best-fitness models themselves. This allows us to paint a larger
picture of not only the best models, but the general significance and robustness of including factors in any given
model. This allows us to more precisely see what contributes to a given models success, and in theory also al-
lows the manual construction of new models based on insights garnered from the algorithmic construction.

4.2 The factor analysis is important for more precisely deducing the dynamics of each factor, as evolutionary model
discovery was successful in evolving a great variety of rules with varying complexity in factor interaction. The
set of evolved rules range from from rules with just one or two factors to the most complex model evolved,
argmin((Frand + Falt − Frand − Fup) ∗ Fdown) ∗ (((Fheur + Fself ) ∗ (Fself + Fheur)) + (Fheur ∗ Fheur)),
incorporating eleven factor presences (although its fitness is only 0.218).

4.3 To further assess the factors using this importance information, we conduct a pairwise analysis comparing the
importance of each factor with every other factor. Results from systematic Mann-Whitney U tests comparing
the permutation importance of each factor A against every other factor B confirm (p < 0.0001) that all factors
except for Fup and Fdown show significant difference and can be ordered from highest to lowest permutation
accuracy importance as: Frand, Futil, Falt, Finc, Fheur, Fpseu, Fself.

4.4 Finally, the 10 best-fit candidate models evolved by the genetic program are reported in Table 2 along with their
mean fitness score. As expected from the factor analysis, Frand is the most frequently appearing factor. Figure
1 displays a selection of these top models (rules 1, 3, and 4) compared against a model consisting of just Frand
(as a kind of null model) and the original utilitarian model. The EMD-derived models score considerably higher
in fitness. We show visualizations of the evolved syntax trees of these models in Figure 2. These may be read
as typical abstract syntax trees; Visualizing them in this manner eases the conceptualization of evolutionary
processes such as branch crossover and mutation.
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Factor Name Description

Rational factors

Fself Selfishness Higher probability for investments closer to 0 tokens
Frand Random Uniform random probability
Fpseu Pseudorandom Pseudorandom “trembling hand” model from Baggio

& Janssen (2013); The first investment is randomly cho-
sen, and subsequent investments are the same as the
first investment plus or minus a noise term

Social factors

Falt Altruism Higher probability for investments closer to the maxi-
mum token investment

Futil Other-regarding preferences (utilitarian) Investment behavior of the original base model, intro-
duced in Baggio & Janssen (2013) based on findings
from behavioral economics

Fup Upstream homophily Higher probability for investments more similar to up-
stream neighbor’s last investment

Fdown Downstream homophily Higher probability for investments more simliar to
downstream neighbor’s last investment

Emotional factors

Finc Relative income Greater weight for below-average-income agents to in-
vest less and above-average-income agents to invest
more.

Table 1: Hypothesized factors contributing to investment behavior

# Rule Mean fitness

0 argmin
x

Fpseu1 − Frand + Futil − Fpseu2 0.5534

1 argmax
x

Frand + Futil 0.5533

2 argmin
x

Frand − Futil 0.5531

3 argmax
x

Fdown − Fup − Fheur 0.5497

4 argmin
x

((Fup − Futil)− ((2 ∗ Fpseu ∗ Futil) + Fup))− Frand 0.5471

5 argmax
x

Frand1 + (Futil ∗ Frand2) 0.5459

6 argmin
x

Fpseu + Fdown − Frand1 − Frand2 0.5442

7 argmin
x

(Fup ∗ Finc) + Frand 0.5368

8 argmin
x

− Frand1 − Frand2 − Fpseu + 2 ∗ Finc 0.5342

9 argmin
x

Frand1 − Frand2 + Fpseu 0.5341

Table 2: The 10 top-scoring rules. Rules are algebraically simplified where applicable. Note that repeat oc-
curences of Frand and Fpseu are marked with additional numbered subcripts to highlight the fact that these
are non-deterministic functions with values that change each time they are called. Thus, they cannot be alge-
braically cancelled. For example, Frand − Frand may resolve to 0.5 if the first Frand rolls 0.75 and the second
rolls 0.25, so we express this as Frand1 − Frand2.
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Figure 1: Comparisons of 100 samples of three of the top-performing models evolved through EMD compared
against a purely random model and the original utilitarian model. Parameters are randomly initialized ±0.05
about their original optimal values. Models designed through EMD insights are significantly more accurate and
robust compared to the original model. Note that, since argmaxx Frand does not depend on the value of x, it
may be simplified to simply Frand.

Figure 2: Visualizations of the evolved syntax trees for rules 1, 3, and 4.
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Discussion

5.1 In this study, we built upon previous work in the study of irrigation systems social dilemmas. We reanalyzed and
augmented a set of agent-based models designed to model behavior in a stylized irrigation dilemma as simu-
lated via a behavioral laboratory experiment. We focused on an individual facet of the model: agents’ behavior
in contributing to the collective upkeep of irrigation infrastructure. Utilizing evolutionary model discovery, we
algorithmically explored a much larger space of possible rules for this behavior than was previously possible.
We find that, in contrast to the original models, our best-performing rules typically have an additional element
of stochasticity and favor factors such as other-regarding preferences and perceived relative income.

5.2 This idea of baseline behavior augmented with a small amount of additional stochasticity was, in fact, ex-
pressed and hypothesized in the models’ original introduction (Baggio & Janssen 2013). For example, rule 1
in Table 2 is a simple addition of the baseline utilitarian model with a random term. Baggio and Jannsen con-
ceptualized this idea as the “wavering hand:” Agents have some idea of how to reason about the system and
make decisions, but incomplete understandings and/or uncertainty can cause an amount of stochasticity about
a more clearly explained behavior. However, we suspect that the discovery of the robustness of this fact may not
have originally occurred as exploring additional rule configuration possibilities was simply too labor-intensive
a process prior to modern iGSS methods.

5.3 There are additional insights to be had from the models generated and subsequent factor analysis. We note that
rule 3 in Table 2 represents an interesting outlier in the top performers, as it defies the factor composition which
would be expected from the importance analysis. This interaction between the heuristic and both up- and
down-stream homophily may belie a particular strategy where upstream farmers are especially motivated to
match the investments of downstream farmers. This insight may be used to inform further research on related
irrigation dilemma strategies.

5.4 Further, we would like to note that, in this current formulation, all agents homogeneously follow the same
strategy. This may be a contributing factor to the appearance of disparate rules with similar fitness in Table
2. Further research may find additional fitness gains through exploring increasingly heterogeneous agents.
Additionally, a clear direction forward may also involve allowing the extraction behavior to vary as well as the
investment behavior.

5.5 Ultimately, given our results and those of other works (Gunaratne 2019; Garibay et al. 2021), we argue that
iGSS methods pave a clear path forward for agent-based modelling and represent a natural evolution of the
practice. We anticipate that further developments of iGSS will serve to bring about a new era of generative social
science models which are not only more accurate and robust, but may aid in uncovering causal mechanisms
that otherwise would have remained un-discovered.
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